Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Ecol Appl ; 31(4): e02303, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33577093

RESUMO

Resilience quantifies the ability of a system to remain in or return to its current state following disturbance. Due to inconsistent terminology and usage of resilience frameworks, quantitative resilience studies are challenging, and resilience is often treated as an abstract concept rather than a measurable system characteristic. We used a novel, spatially explicit stakeholder engagement process to quantify social-ecological resilience to fire, in light of modeled social-ecological fire risk, across the non-fire-adapted Sonoran Desert Ecosystem in Arizona, USA. Depending on its severity and the characteristics of the ecosystem, fire as a disturbance has the potential to drive ecological state change. As a result, fire regime change is of increasing concern as global change and management legacies alter the distribution and flammability of fuels. Because management and use decisions impact resources and ecological processes, social and ecological factors must be evaluated together to predict resilience to fire. We found highest fire risk in the central and eastern portions of the study area, where flammable fuels occur with greater density and frequency and managers reported fewer management resources than in other locations. We found lowest fire resilience in the southeastern portion of the study area, where combined ecological and social factors, including abundant fuels, few management resources, and little evidence of past institutional adaptability, indicated that sites were least likely to retain their current characteristics and permit achievement of current management objectives. Analyzing ecological and social characteristics together permits regional managers to predict the effects of changing fire regimes across large, multi-jurisdictional landscapes and to consider where to direct resources. This study brought social and ecological factors together into a common spatial framework to produce vulnerability maps; our methods may inform researchers and managers in other systems facing novel disturbance and spatially variable resilience.


Assuntos
Ecossistema , Incêndios , Arizona
2.
J Environ Manage ; 280: 111644, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33234318

RESUMO

As a multi-jurisdictional, non-fire-adapted region, the Sonoran Desert Ecoregion is a complex, social-ecological system faced increasingly with no-analogue conditions. A diversity of management objectives and activities form the socioecological landscape of fire management. Different managers have different objectives, resources, and constraints, and each therefore applies different activities. As a result, it can be difficult to predict the regional consequences of changing fire regimes. We interviewed and surveyed managers of 53 million acres of government-managed lands across the Sonoran Desert Ecoregion of Arizona, asking them to describe their management objectives and activities as well as expected changes in the face of projected fire regime change across the region. If current activities were deemed unlikely to meet objectives into the future, this represents a likely adaptation turning point, where new activities are required in order to meet objectives. If no potential activity will meet an objective, it may be necessary to select a new objective, indicating an adaptation tipping point. Here, we report which current objectives and activities are deemed by managers most likely and least likely to succeed. We also discuss constraints reported by managers from different jurisdictions. We find that agriculture, military, and resource extraction objectives are perceived by managers as most likely to be met, whereas conservation of natural and cultural resources is considered least likely to be achieved. Federal land managers reported higher likelihood of both achieving current objectives and adopting new activities than did non-federal land managers. This study illustrates how rapid global change is affecting the ability of land managers differing in missions, mandates, and resources to achieve their central objectives, as well as the constraints and opportunities they face. Our results indicate that changing environmental conditions are unlikely to affect all management entities equally and for some jurisdictions may result in adaptation turning points or tipping points in natural and cultural resource conservation.


Assuntos
Conservação dos Recursos Naturais , Incêndios , Agricultura , Arizona , Ecossistema
3.
Mov Ecol ; 8: 38, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042548

RESUMO

BACKGROUND: Preserving corridors for movement and gene flow among populations can assist in the recovery of threatened and endangered species. As human activity continues to fragment habitats, characterizing natural corridors is important in establishing and maintaining connectivity corridors within the anthropogenic development matrix. The Mojave desert tortoise (Gopherus agassizii) is a threatened species occupying a variety of habitats in the Mojave and Colorado Deserts. Desert tortoises have been referred to as corridor-dwellers, and understanding how they move within suitable habitat can be crucial to defining corridors that will sustain sufficient gene flow to maintain connections among populations amidst the increases in human development. METHODS: To elucidate how tortoises traverse available habitat and interact with potentially inhospitable terrain and human infrastructure, we used GPS dataloggers to document fine-scale movement of individuals and estimate home ranges at ten study sites along the California/Nevada border. Our sites encompass a variety of habitats, including mountain passes that serve as important natural corridors connecting neighboring valleys, and are impacted by a variety of linear anthropogenic features. We used path selection functions to quantify tortoise movements and develop resistance surfaces based on landscape characteristics including natural features, anthropogenic alterations, and estimated home ranges with autocorrelated kernel density methods. Using the best supported path selection models and estimated home ranges, we determined characteristics of known natural corridors and compared them to mitigation corridors (remnant habitat patches) that have been integrated into land management decisions in the Ivanpah Valley. RESULTS: Tortoises avoided areas of high slope and low perennial vegetation cover, avoided moving near low-density roads, and traveled along linear barriers (fences and flood control berms). CONCLUSIONS: We found that mitigation corridors designated between solar facilities should be wide enough to retain home ranges and maintain function. Differences in home range size and movement resistance between our two natural mountain pass corridors align with differences in genetic connectivity, suggesting that not all natural corridors provide the same functionality. Furthermore, creation of mitigation corridors with fences may have unintended consequences and may function differently than natural corridors. Understanding characteristics of corridors with different functionality will help future managers ensure that connectivity is maintained among Mojave desert tortoise populations.

4.
Evolution ; 74(2): 459-475, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31710098

RESUMO

Terrestrial breeding is a derived condition in frogs, with multiple transitions from an aquatic ancestor. Shifts in reproductive mode often involve changes in habitat use, and these are typically associated with diversification in body plans, with repeated transitions imposing similar selective pressures. We examine the diversification of reproductive modes, male and female body sizes, and sexual size dimorphism (SSD) in the Neotropical frog genera Cycloramphus and Zachaenus, both endemic to the Atlantic rainforest of Brazil. Species in this clade either breed in rocky streams (saxicolous) or in terrestrial environments, allowing us to investigate reproductive habitat shifts. We constructed a multilocus molecular phylogeny and inferred evolutionary histories of reproductive habitats, body sizes, and SSD. The common ancestor was small, saxicolous, and had low SSD. Terrestrial breeding evolved independently three times and we found a significant association between reproductive habitat and SSD, with shifts to terrestrial breeding evolving in correlation with decreases in male body size, but not female body size. Terrestrial breeding increases the availability of breeding sites and results in concealment of amplexus, egg-laying, and parental care, therefore reducing male-male competition at all stages of reproduction. We conclude that correlated evolution of terrestrial reproduction and small males is due to release from intense male-male competition that is typical of exposed saxicolous breeding.


Assuntos
Anuros/fisiologia , Evolução Biológica , Tamanho Corporal , Comportamento Sexual Animal , Animais , Brasil , Comportamento Competitivo , Ecossistema , Feminino , Masculino , Oviposição , Filogenia , Reprodução , Caracteres Sexuais
5.
Conserv Biol ; 33(5): 1094-1105, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30793368

RESUMO

Translocation is used by managers to mitigate the negative impacts of development on species. Moving individuals to a new location is challenging, and many translocation attempts have failed. Robust, posttranslocation monitoring is therefore important for evaluating effects of translocation on target species. We evaluated the efficacy of a translocation designed to mitigate the effects of a utility-scale solar energy project on the U.S. federally listed Mojave desert tortoise (Gopherus agassizii). The species is a long-lived reptile threatened by a variety of factors, including habitat loss due to renewable energy development in the Mojave Desert and portions of the Colorado Desert in southern California (southwestern United States). We translocated 58 individual tortoises away from the project's construction site and intensively monitored them over 5 years (2012-2017). We monitored these individuals and tortoises located in the translocation release area (resident tortoises; n = 112) and control tortoises (n = 149) in a nearby location. We used our tortoise encounter data and known-fate survival models to estimate annual and cumulative survival. Translocated tortoises in each of 2 size classes (120-160 mm, >160 mm) did not survive at lower rates than resident and control tortoises over the study period. For models with different sets of biotic and abiotic covariates, annual and cumulative estimates of survival were always >0.87 and >0.56, respectively. Larger tortoises tended to have higher survival, but translocated tortoises were not differentially affected by the covariates used to model variation in survival. Based on these findings, our translocation design and study protocols could inform other translocation projects for desert species. Our case study highlights the benefits of combining rigorous scientific monitoring with well-designed, mitigation-driven management actions to reduce the negative effects of development on species of conservation concern.


Monitoreo Multianual de la Supervivencia de un Reptil Longevo en Peligro después de una Reubicación por Mitigación Resumen Los administradores utilizan la reubicación para mitigar los impactos negativos que el desarrollo tiene sobre las especies. El traslado de individuos hacia una nueva ubicación es todo un reto y muchos intentos de reubicación han fallado. Por esto el monitoreo robusto post-reubicación es importante para la evaluación de los efectos de la reubicación sobre las especies. Evaluamos la eficiencia de una reubicación diseñada para mitigar los efectos de un proyecto de energía solar fotovoltaica sobre la tortuga terrestre del desierto de Mojave (Gopherus agassizii), una especie en la lista federal estadunidense de especies en peligro. Los reptiles de esta especie son longevos y se encuentran en peligro por una variedad de factores, incluyendo la pérdida del hábitat por el desarrollo de energías renovables en el desierto de Mojave y en porciones del desierto del Colorado en el sur de California (suroeste de los Estados Unidos). Reubicamos a 58 individuos de esta especie para alejarlos del sitio de construcción del proyecto y los monitoreamos intensivamente durante cinco años (2012 - 2017). Monitoreamos a estos individuos y a las tortugas que ya se encontraban en el sitio de liberación (tortugas residentes; n = 112), así como a un grupo control de tortugas (n = 149) en una ubicación cercana. Usamos nuestros datos de encuentro con tortugas y modelos de supervivencia con destino conocido para estimar la supervivencia anual y acumulativa. Las tortugas reubicadas en cada una de las dos clases de tamaño (120-160 mm, >160 mm) no sobrevivieron a tasas más bajas que las residentes y las del grupo control durante el periodo de estudio. Para los modelos con conjuntos diferentes de co-variados bióticos y abióticos los estimados anuales y acumulativos de supervivencia fueron siempre >0.87 y >0.56, respectivamente. Las tortugas más grandes tendieron a tener una mayor supervivencia, aunque las tortugas reubicadas no se vieron afectadas diferencialmente por los co-variados que se usaron para modelar la variación de la supervivencia. Con base en estos hallazgos, nuestro diseño de reubicación y nuestros protocolos de estudio podrían informar a otros proyectos de reubicación para especies de desierto. Nuestro estudio de caso resalta los beneficios de la combinación del monitoreo científico riguroso con acciones de manejo bien diseñadas y llevadas por la mitigación para reducir los efectos negativos del desarrollo sobre las especies de importancia para la conservación.


Assuntos
Conservação dos Recursos Naturais , Tartarugas , Animais , California , Colorado , Répteis , Sudoeste dos Estados Unidos
6.
Conserv Biol ; 33(2): 239-249, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30311266

RESUMO

Conservation practitioners have long recognized ecological connectivity as a global priority for preserving biodiversity and ecosystem function. In the early years of conservation science, ecologists extended principles of island biogeography to assess connectivity based on source patch proximity and other metrics derived from binary maps of habitat. From 2006 to 2008, the late Brad McRae introduced circuit theory as an alternative approach to model gene flow and the dispersal or movement routes of organisms. He posited concepts and metrics from electrical circuit theory as a robust way to quantify movement across multiple possible paths in a landscape, not just a single least-cost path or corridor. Circuit theory offers many theoretical, conceptual, and practical linkages to conservation science. We reviewed 459 recent studies citing circuit theory or the open-source software Circuitscape. We focused on applications of circuit theory to the science and practice of connectivity conservation, including topics in landscape and population genetics, movement and dispersal paths of organisms, anthropogenic barriers to connectivity, fire behavior, water flow, and ecosystem services. Circuit theory is likely to have an effect on conservation science and practitioners through improved insights into landscape dynamics, animal movement, and habitat-use studies and through the development of new software tools for data analysis and visualization. The influence of circuit theory on conservation comes from the theoretical basis and elegance of the approach and the powerful collaborations and active user community that have emerged. Circuit theory provides a springboard for ecological understanding and will remain an important conservation tool for researchers and practitioners around the globe.


Aplicaciones de la Teoría de Circuitos a la Conservación y a la Ciencia de la Conectividad Resumen Quienes practican la conservación han reconocido durante mucho tiempo que la conectividad ecológica es una prioridad mundial para la preservación de la biodiversidad y el funcionamiento del ecosistema. Durante los primeros años de la ciencia de la conservación los ecólogos difundieron los principios de la biografía de islas para evaluar la conectividad con base en la proximidad entre el origen y el fragmento, así como otras medidas derivadas de los mapas binarios de los hábitats. Entre 2006 y 2008 el fallecido Brad McRae introdujo la teoría de circuitos como una estrategia alternativa para modelar el flujo génico y la dispersión o las rutas de movimiento de los organismos. McRae propuso conceptos y medidas de la teoría de circuitos eléctricos como una manera robusta para cuantificar el movimiento a lo largo de múltiples caminos posibles en un paisaje, no solamente a lo largo de un camino o corredor de menor costo. La teoría de circuitos ofrece muchos enlaces teóricos, conceptuales y prácticos con la ciencia de la conservación. Revisamos 459 estudios recientes que citan la teoría de circuitos o el software de fuente abierta Circuitscape. Nos enfocamos en las aplicaciones de la teoría de circuitos a la ciencia y a la práctica de la conservación de la conectividad, incluyendo temas como la genética poblacional y del paisaje, movimiento y caminos de dispersión de los organismos, barreras antropogénicas de la conectividad, comportamiento ante incendios, flujo del agua, y servicios ambientales. La teoría de circuitos probablemente tenga un efecto sobre la ciencia de la conservación y quienes la practican por medio de una percepción mejorada de las dinámicas del paisaje, el movimiento animal, y los estudios de uso de hábitat, y por medio del desarrollo de nuevas herramientas de software para el análisis de datos y su visualización. La influencia de la teoría de circuitos sobre la conservación viene de la base teórica y la elegancia de la estrategia y de las colaboraciones fuertes y la comunidad activa de usuarios que han surgido recientemente. La teoría de circuitos proporciona un trampolín para el entendimiento ecológico y seguirá siendo una importante herramienta de conservación para los investigadores y practicantes en todo el mundo.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Ecologia , Fluxo Gênico , Ilhas
7.
Proc Natl Acad Sci U S A ; 115(49): 12471-12476, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30397141

RESUMO

Species richness is greatest in the tropics, and much of this diversity is concentrated in mountains. Janzen proposed that reduced seasonal temperature variation selects for narrower thermal tolerances and limited dispersal along tropical elevation gradients [Janzen DH (1967) Am Nat 101:233-249]. These locally adapted traits should, in turn, promote reproductive isolation and higher speciation rates in tropical mountains compared with temperate ones. Here, we show that tropical and temperate montane stream insects have diverged in thermal tolerance and dispersal capacity, two key traits that are drivers of isolation in montane populations. Tropical species in each of three insect clades have markedly narrower thermal tolerances and lower dispersal than temperate species, resulting in significantly greater population divergence, higher cryptic diversity, higher tropical speciation rates, and greater accumulation of species over time. Our study also indicates that tropical montane species, with narrower thermal tolerance and reduced dispersal ability, will be especially vulnerable to rapid climate change.


Assuntos
Distribuição Animal , Biodiversidade , Especiação Genética , Insetos/genética , Insetos/fisiologia , Altitude , Animais , Temperatura , Clima Tropical
8.
J Environ Manage ; 227: 87-94, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30172162

RESUMO

Changes in fire frequency, size, and severity are driving ecological transformations in many systems. In arid and semi-arid regions that are adapted to fire, long-term fire exclusion by managers leads to declines in fire frequency, altered fire size distribution, and increased proportion of high severity fires. In arid and semi-arid systems where fire was historically rare, factors such as invasion by highly combustible non-native plants elevate fire frequency and size, elevating mortality of native species. Altered temperature and precipitation regimes may exacerbate these changes by increasing biomass and flammability. Current transformation in fire dynamics carry social as well as ecological consequences. Human cultures, livelihoods, values, and management behaviors are attuned to fire dynamics. Changes can make it costly or impossible to maintain traditional landscape use and economic activities. We review the ecological and social science literature to examine drivers of altered fire dynamics in arid and semi-arid systems worldwide and the conditions representing fire dynamics thresholds-points at which altered conditions may make it difficult or impossible to achieve management objectives, even via traditional adaptive management focusing on alternative management activities to achieve objectives. Such thresholds could force a wholesale shift in management objectives and practices and a new approach to adaptive management that redefines objectives when no viable adaptive action can be undertaken.


Assuntos
Clima Desértico , Ecologia , Incêndios , Biomassa , Ecossistema , Plantas
9.
mBio ; 9(2)2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29615498

RESUMO

Peptidoglycan is a sugar/amino acid polymer unique to bacteria and essential for division and cell shape maintenance. The d-amino acids that make up its cross-linked stem peptides are not abundant in nature and must be synthesized by bacteria de novo d-Glutamate is present at the second position of the pentapeptide stem and is strictly conserved in all bacterial species. In Gram-negative bacteria, d-glutamate is generated via the racemization of l-glutamate by glutamate racemase (MurI). Chlamydia trachomatis is the leading cause of infectious blindness and sexually transmitted bacterial infections worldwide. While its genome encodes a majority of the enzymes involved in peptidoglycan synthesis, no murI homologue has ever been annotated. Recent studies have revealed the presence of peptidoglycan in C. trachomatis and confirmed that its pentapeptide includes d-glutamate. In this study, we show that C. trachomatis synthesizes d-glutamate by utilizing a novel, bifunctional homologue of diaminopimelate epimerase (DapF). DapF catalyzes the final step in the synthesis of meso-diaminopimelate, another amino acid unique to peptidoglycan. Genetic complementation of an Escherichia coli murI mutant demonstrated that Chlamydia DapF can generate d-glutamate. Biochemical analysis showed robust activity, but unlike canonical glutamate racemases, activity was dependent on the cofactor pyridoxal phosphate. Genetic complementation, enzymatic characterization, and bioinformatic analyses indicate that chlamydial DapF shares characteristics with other promiscuous/primordial enzymes, presenting a potential mechanism for d-glutamate synthesis not only in Chlamydia but also numerous other genera within the Planctomycetes-Verrucomicrobiae-Chlamydiae superphylum that lack recognized glutamate racemases.IMPORTANCE Here we describe one of the last remaining "missing" steps in peptidoglycan synthesis in pathogenic Chlamydia species, the synthesis of d-glutamate. We have determined that the diaminopimelate epimerase (DapF) encoded by Chlamydia trachomatis is capable of carrying out both the epimerization of DAP and the pyridoxal phosphate-dependent racemization of glutamate. Enzyme promiscuity is thought to be the hallmark of early microbial life on this planet, and there is currently an active debate as to whether "moonlighting enzymes" represent primordial evolutionary relics or are a product of more recent reductionist evolutionary pressures. Given the large number of Chlamydia species (as well as members of the Planctomycetes-Verrucomicrobiae-Chlamydiae superphylum) that possess DapF but lack homologues of MurI, it is likely that DapF is a primordial isomerase that functions as both racemase and epimerase in these organisms, suggesting that specialized d-glutamate racemase enzymes never evolved in these microbes.


Assuntos
Isomerases de Aminoácido/metabolismo , Chlamydia trachomatis/enzimologia , Ácido Glutâmico/metabolismo , Isomerases de Aminoácido/genética , Chlamydia trachomatis/genética , Biologia Computacional , Ácido Diaminopimélico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Teste de Complementação Genética , Peptidoglicano/metabolismo
10.
Ecol Evol ; 7(17): 7010-7022, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28904779

RESUMO

Changes to animal movement in response to human-induced changes to the environment are of growing concern in conservation. Most research on this problem has focused on terrestrial endotherms, but changes to herpetofaunal movement are also of concern given their limited dispersal abilities and specialized thermophysiological requirements. Animals in the desert region of the southwestern United States are faced with environmental alterations driven by development (e.g., solar energy facilities) and climate change. Here, we study the movement ecology of a desert species of conservation concern, the Mojave desert tortoise (Gopherus agassizii). We collected weekly encounter locations of marked desert tortoises during the active (nonhibernation) seasons in 2013-2015, and used those data to discriminate movements among activity centers from those within them. We then modeled the probability of movement among activity centers using a suite of covariates describing characteristics of tortoises, natural and anthropogenic landscape features, vegetation, and weather. Multimodel inference indicated greatest support for a model that included individual tortoise characteristics, landscape features, and weather. After controlling for season, date, age, and sex, we found that desert tortoises were more likely to move among activity centers when they were further from minor roads and in the vicinity of barrier fencing; we also found that movement between activity centers was more common during periods of greater rainfall and during periods where cooler temperatures coincided with lower rainfall. Our findings indicate that landscape alterations and climate change both have the potential to impact movements by desert tortoises during the active season. This study provides an important baseline against which we can detect future changes in tortoise movement behavior.

11.
Sci Rep ; 7: 44152, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28276519

RESUMO

Biotic and abiotic factors are increasingly acknowledged to synergistically shape broad-scale species distributions. However, the relative importance of biotic and abiotic factors in predicting species distributions is unclear. In particular, biotic factors, such as predation and vegetation, including those resulting from anthropogenic land-use change, are underrepresented in species distribution modeling, but could improve model predictions. Using generalized linear models and model selection techniques, we used 129 estimates of population density of wild pigs (Sus scrofa) from 5 continents to evaluate the relative importance, magnitude, and direction of biotic and abiotic factors in predicting population density of an invasive large mammal with a global distribution. Incorporating diverse biotic factors, including agriculture, vegetation cover, and large carnivore richness, into species distribution modeling substantially improved model fit and predictions. Abiotic factors, including precipitation and potential evapotranspiration, were also important predictors. The predictive map of population density revealed wide-ranging potential for an invasive large mammal to expand its distribution globally. This information can be used to proactively create conservation/management plans to control future invasions. Our study demonstrates that the ongoing paradigm shift, which recognizes that both biotic and abiotic factors shape species distributions across broad scales, can be advanced by incorporating diverse biotic factors.


Assuntos
Espécies Introduzidas , Modelos Biológicos , Sus scrofa/fisiologia , Animais , Dinâmica Populacional
12.
Open Forum Infect Dis ; 2(4): ofv134, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26484357

RESUMO

Shiga toxins (Stx) are commonly produced by Shigella dysenteriae serotype 1 and Stx-producing Escherichia coli. However, the toxin genes have been detected in additional Shigella species. We recently reported the emergence of Stx-producing Shigella in travelers in the United States and France who had recently visited Hispaniola (Haiti and the Dominican Republic). In this study, we confirm this epidemiological link by identifying Stx-producing Shigella from Haitian patients attending clinics near Port-au-Prince. We also demonstrate that the bacteriophage encoding Stx is capable of dissemination to stx-negative Shigella species found in Haiti, suggesting that Stx-producing Shigella may become more widespread within that region.

13.
Ecol Appl ; 25(4): 1099-113, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26465045

RESUMO

Understanding where and when on the landscape fire is likely to burn (fire likelihood) and the predicted responses of valued resources (fire effects) will lead to more effective management of wildfire risk in multiple ecosystem types. Fire is a contagious and highly unpredictable process, and an analysis of fire connectivity that incorporates stochasticity may help predict fire likelihood across large extents. We developed a model of fire connectivity based on electrical circuit theory, which is a probabilistic approach to modeling ecological flows. We first parameterized our model to reflect the synergistic influences of fuels, landscape properties, and winds on fire spread in the lower Sonoran Desert of southwestern Arizona, and then defined this landscape as an interconnected network through which to model flow (i.e., fire spread). We interpreted the mapped outputs as fire likelihood and used historical burned area data to evaluate our results. Expected fire effects were characterized based on the degree to which future fire exposure might negatively impact native plant community recovery, taking into account the impact of repeated fire and major vegetation associations. We explored fire effects within habitat for the endangered Sonoran pronghorn antelope and designated wilderness. Model results indicated that fire likelihood was higher in lower elevations, and in areas with lower slopes and topographic roughness. Fire likelihood and effects were predicted to be high in 21% of the currently occupied range of the Sonoran pronghorn and 15% of the additional habitat considered suitable. Across 16 designated wilderness areas, highest predicted fire likelihood and effects fell within low elevation wilderness areas that overlapped large fire perimeters that occurred in 2005. As ongoing changes in climate and land cover are poised to alter the fire regime across extensive and ecologically important areas in the lower Sonoran Desert, an analysis of fire likelihood and effects can contribute new and important information to fire and fuels management. Our novel approach to modeling fire connectivity addresses challenges in quantifying and communicating wildfire risk and is applicable to other ecosystems and management issues globally.


Assuntos
Clima Desértico , Ecossistema , Monitoramento Ambiental/métodos , Incêndios , Modelos Teóricos , Animais , Antílopes/fisiologia , Arizona
14.
Mol Ecol ; 23(24): 6011-28, 2014 12.
Artigo em Inglês | MEDLINE | ID: mdl-25370460

RESUMO

Big bluestem (Andropogon gerardii) is an ecologically dominant grass with wide distribution across the environmental gradient of U.S. Midwest grasslands. This system offers an ideal natural laboratory to study population divergence and adaptation in spatially varying climates. Objectives were to: (i) characterize neutral genetic diversity and structure within and among three regional ecotypes derived from 11 prairies across the U.S. Midwest environmental gradient, (ii) distinguish between the relative roles of isolation by distance (IBD) vs. isolation by environment (IBE) on ecotype divergence, (iii) identify outlier loci under selection and (iv) assess the association between outlier loci and climate. Using two primer sets, we genotyped 378 plants at 384 polymorphic AFLP loci across regional ecotypes from central and eastern Kansas and Illinois. Neighbour-joining tree and PCoA revealed strong genetic differentiation between Kansas and Illinois ecotypes, which was better explained by IBE than IBD. We found high genetic variability within prairies (80%) and even fragmented Illinois prairies, surprisingly, contained high within-prairie genetic diversity (92%). Using Bayenv2, 14 top-ranked outlier loci among ecotypes were associated with temperature and precipitation variables. Six of seven BayeScanFST outliers were in common with Bayenv2 outliers. High genetic diversity may enable big bluestem populations to better withstand changing climates; however, population divergence supports the use of local ecotypes in grassland restoration. Knowledge of genetic variation in this ecological dominant and other grassland species will be critical to understanding grassland response and restoration challenges in the face of a changing climate.


Assuntos
Andropogon/genética , Ecótipo , Genética Populacional , Pradaria , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Teorema de Bayes , DNA de Plantas/genética , Variação Genética , Meio-Oeste dos Estados Unidos , Modelos Genéticos , Seleção Genética , Análise de Sequência de DNA
15.
Emerg Infect Dis ; 20(10): 1669-77, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25271406

RESUMO

Shiga toxins (Stx) are cytotoxins involved in severe human intestinal disease. These toxins are commonly found in Shigella dysenteriae serotype 1 and Shiga-toxin-producing Escherichia coli; however, the toxin genes have been found in other Shigella species. We identified 26 Shigella flexneri serotype 2 strains isolated by public health laboratories in the United States during 2001-2013, which encode the Shiga toxin 1a gene (stx1a). These strains produced and released Stx1a as measured by cytotoxicity and neutralization assays using anti-Stx/Stx1a antiserum. The release of Stx1a into culture supernatants increased ≈100-fold after treatment with mitomycin C, suggesting that stx1a is carried by a bacteriophage. Infectious phage were found in culture supernatants and increased ≈1,000-fold with mitomycin C. Whole-genome sequencing of several isolates and PCR analyses of all strains confirmed that stx1a was carried by a lambdoid bacteriophage. Furthermore, all patients who reported foreign travel had recently been to Hispañiola, suggesting that emergence of these novel strains is associated with that region.


Assuntos
Disenteria Bacilar/epidemiologia , Disenteria Bacilar/microbiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Toxina Shiga I/metabolismo , Shigella flexneri/metabolismo , Animais , Chlorocebus aethiops , República Dominicana/epidemiologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Haiti/epidemiologia , Humanos , Lisogenia , Mitomicina/farmacologia , Mutação , Prófagos , Sorogrupo , Toxina Shiga I/classificação , Toxina Shiga I/genética , Shigella flexneri/classificação , Shigella flexneri/genética , Shigella flexneri/patogenicidade , Siphoviridae/genética , Siphoviridae/fisiologia , Células Vero , Virulência
16.
Cytoskeleton (Hoboken) ; 68(8): 459-69, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21766471

RESUMO

The characteristic geometry of the unicellular chlorophyte Chlamydomonas reinhardtii has contributed to its adoption as a model system for cellular asymmetry and organelle positioning. The eyespot, a photosensitive organelle, is localized asymmetrically in the cell at a precisely defined position relative to the flagella and cytoskeletal microtubule rootlets. We have isolated a mutant, named pey1 for posterior eyespot, with variable microtubule rootlet lengths. The length of the acetylated daughter four-membered (D4) microtubule rootlet correlates with the position of the eyespot, which appears in a posterior position in the majority of cells. The correlation of rootlet length with eyespot positioning was also observed in the cmu1 mutant, which has longer acetylated microtubules, and the mlt1 mutant, in which the rootlet microtubules are shorter. Observation of eyespot positioning after depolymerization of rootlet microtubules indicated that eyespot position is fixed early in eyespot development and becomes independent of the rootlet. Our data demonstrate that the length of the D4 rootlet is the major determinant of eyespot positioning on the anterior-posterior axis and are suggestive that the gene product of the PEY1 locus is a novel regulator of acetylated microtubule length.


Assuntos
Chlamydomonas reinhardtii/fisiologia , Microtúbulos/fisiologia , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/ultraestrutura , Microtúbulos/genética , Microtúbulos/ultraestrutura , Organelas/genética
17.
Mol Microbiol ; 79(3): 786-98, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21255118

RESUMO

The type II secretion system is a multi-protein complex that spans the cell envelope of Gram-negative bacteria and promotes the secretion of proteins, including several virulence factors. This system is homologous to the type IV pilus biogenesis machinery and contains five proteins, EpsG-K, termed the pseudopilins that are structurally homologous to the type IV pilins. The major pseudopilin EpsG has been proposed to form a pilus-like structure in an energy-dependent process that requires the ATPase, EpsE. A key remaining question is how the membrane-bound EpsG interacts with the cytoplasmic ATPase, and if this is a direct or indirect interaction. Previous studies have established an interaction between the bitopic inner membrane protein EpsL and EpsE; therefore, in this study we used in vivo cross-linking to test the hypothesis that EpsG interacts with EpsL. Our findings suggest that EpsL may function as a scaffold to link EpsG and EpsE and thereby transduce the energy generated by ATP hydrolysis to support secretion. The recent discovery of structural homology between EpsL and a protein in the type IV pilus system implies that this interaction may be conserved and represent an important functional interaction for both the type II secretion and type IV pilus systems.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Reagentes de Ligações Cruzadas/metabolismo , Proteínas de Fímbrias/metabolismo , Vibrio cholerae/enzimologia , Imunoprecipitação , Modelos Moleculares , Mutação/genética , Ligação Proteica , Processamento de Proteína Pós-Traducional , Treonina/metabolismo
18.
Infect Immun ; 78(10): 4122-33, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20679441

RESUMO

ToxR-dependent recruitment of TcpP to the toxT promoter facilitates toxT transcription in Vibrio cholerae, initiating a regulatory cascade that culminates in cholera toxin expression and secretion. Although TcpP usually requires ToxR to activate the toxT promoter, TcpP overexpression can circumvent the requirement for ToxR in this process. To define nucleotides critical for TcpP-dependent promoter recognition and activation, a series of toxT promoter derivatives with single-base-pair transversions spanning the TcpP-binding site were generated and used as plasmid-borne toxT-lacZ fusions, as DNA mobility shift targets, and as allelic replacements of the chromosomal toxT promoter. When present in ΔtoxR V. cholerae overexpressing TcpP, several transversions affecting nucleotides within two direct repeats present in the TcpP-binding region (TGTAA-N(6)-TGTAA) caused defects in TcpP-dependent toxT-lacZ fusion activation and toxin production. Electrophoretic mobility shift assays demonstrated that these same transversions reduced the affinity of the toxT promoter for TcpP. The presence of ToxR suppressed transcription activation defects associated with most, but not all, transversions. Particularly, the central thymine nucleotide of both pentameric repeats was essential for efficient toxT activation, even in the presence of ToxR. These results suggest that the toxT promoter recognition function provided by ToxR can facilitate the interaction of TcpP with the toxT promoter but is insufficient for promoter activation when the TcpP-binding site has been severely compromised by mutation. Thus, the interaction of TcpP with nucleotides of the direct repeat sequences appears to be a prerequisite for toxT promoter activation.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regiões Promotoras Genéticas/fisiologia , Fatores de Transcrição/metabolismo , Vibrio cholerae/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , Cromossomos Bacterianos , Regulação Bacteriana da Expressão Gênica/fisiologia , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Fatores de Transcrição/genética , Vibrio cholerae/genética
19.
EcoSal Plus ; 4(1)2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26443782

RESUMO

The type II secretion system (T2SS) is used by Escherichia coli and other gram-negative bacteria to translocate many proteins, including toxins and proteases, across the outer membrane of the cell and into the extracellular space. Depending on the bacterial species, between 12 and 15 genes have been identified that make up a T2SS operon. T2SSs are widespread among gram-negative bacteria, and most E. coli appear to possess one or two complete T2SS operons. Once expressed, the multiple protein components that form the T2S system are localized in both the inner and outer membranes, where they assemble into an apparatus that spans the cell envelope. This apparatus supports the secretion of numerous virulence factors; and therefore secretion via this pathway is regarded in many organisms as a major virulence mechanism. Here, we review several of the known E. coli T2S substrates that have proven to be critical for the survival and pathogenicity of these bacteria. Recent structural and biochemical information is also reviewed that has improved our current understanding of how the T2S apparatus functions; also reviewed is the role that individual proteins play in this complex system.

20.
J Biol Chem ; 284(38): 25466-70, 2009 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-19640838

RESUMO

The pseudopilus is a key feature of the type 2 secretion system (T2SS) and is made up of multiple pseudopilins that are similar in fold to the type 4 pilins. However, pilins have disulfide bridges, whereas the major pseudopilins of T2SS do not. A key question is therefore how the pseudopilins, and in particular, the most abundant major pseudopilin, GspG, obtain sufficient stability to perform their function. Crystal structures of Vibrio cholerae, Vibrio vulnificus, and enterohemorrhagic Escherichia coli (EHEC) GspG were elucidated, and all show a calcium ion bound at the same site. Conservation of the calcium ligands fully supports the suggestion that calcium ion binding by the major pseudopilin is essential for the T2SS. Functional studies of GspG with mutated calcium ion-coordinating ligands were performed to investigate this hypothesis and show that in vivo protease secretion by the T2SS is severely impaired. Taking all evidence together, this allows the conclusion that, in complete contrast to the situation in the type 4 pili system homologs, in the T2SS, the major protein component of the central pseudopilus is dependent on calcium ions for activity.


Assuntos
Cálcio/química , Escherichia coli Êntero-Hemorrágica/química , Proteínas de Fímbrias/química , Vibrio cholerae/química , Transporte Biológico/fisiologia , Cálcio/metabolismo , Cátions Bivalentes/química , Cátions Bivalentes/metabolismo , Escherichia coli Êntero-Hemorrágica/genética , Escherichia coli Êntero-Hemorrágica/metabolismo , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Ligantes , Mutação , Ligação Proteica/fisiologia , Estabilidade Proteica , Estrutura Terciária de Proteína/fisiologia , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Vibrio cholerae/genética , Vibrio cholerae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA